Machine Learning Techniques for Online Social Networks
- Publisher
- Springer Nature
- Initial publish date
- May 2018
- Category
- General, General, Media Studies
-
Hardback
- ISBN
- 9783319899312
- Publish Date
- May 2018
- List Price
- $145.95
Add it to your shelf
Where to buy it
Description
The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis.Machine Learning Techniques for Online Social Networkswill appeal to researchers and students in these fields.
About the authors
Contributor Notes
Tansel Özyer is an associate professor of Computer Engineering at TOBB University of Economics and Technology, Turkey. He completed his PhD in Computer Science, University of Calgary. He received his MSc and BSc from Computer Engineering departments of METU and Bilkent University. Research interests are data mining, social network analysis, machine learning, bioinformatics, XML, mobile databases, and computer vision.
Reda Alhajj is a professor in the Department of Computer Science at the University of Calgary. He published over 500 papers in refereed international journals and conferences. He is founding editor in chief of the Springer premier journal "Social Networks Analysis and Mining", founding editor-in-chief of Springer Series "Lecture Notes on Social Networks", founding editor-in-chief of Springer journal "Network Modeling Analysis in Health Informatics and Bioinformatics", founding co-editor-in-chief of Springer "Encyclopedia on Social NetworksAnalysis and Mining", founding steering chair of IEEE/ACM ASONAM, and three accompanying symposiums FAB, FOSINT-SI and HI-BI-BI. Dr. Alhajj's research concentrates primarily on data science from management to integration and analysis.