Skip to main content Skip to search Skip to search

Computers Intelligence (ai) & Semantics

Algorithmic Learning Theory

15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings

by (author) Shai Ben David

edited by John Case & Akira Maruoka

Publisher
Springer/Sci-Tech/Trade
Initial publish date
Sep 2004
Category
Intelligence (AI) & Semantics, Computer Science
  • Paperback / softback

    ISBN
    9783540233565
    Publish Date
    Sep 2004
    List Price
    $80.5

Add it to your shelf

Where to buy it

Description

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical “elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the “eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re?ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the “eld, placing each of these topics in the general context of the “eld. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. A “rst dichotomy is between viewing learning as an inde?nite process and viewing it as a “nite activity with a de?ned termination. Inductive Inference models focus on inde?nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion.

About the authors